INTERNAL STRUCTURE OF TERRESTRIAL EXOPLANETS

Bastien Brugger
Olivier Mousis
Magali Deleuil

OHP 15/10/2018

Aix*Marseille université

EXOPLANETS DETECTION

- More than 3700 validated exoplanets
- Mass and radius known for ~17%

Model that reproduces the **behavior** of planet-forming materials under conditions relevant to **planetary interiors**:

Interior model Model that reproduces the **behavior** of planet-forming materials under conditions relevant to **planetary interiors**:

Internal structure & bulk composition of the planet

Gravity, pressure, temperature, density

INTERIOR OF EARTH

INTERIOR OF EARTH

INTERIOR MODEL

Brugger et al. 2016, 2017

- Interior of terrestrial planets:
 - Metallic core (liquid Fe-S-Si)
 - Silicate mantle (mineralogy from PerpleX)

Mantle phase diagram

REPRODUCING THE EARTH

INTERIOR MODEL

Brugger et al. 2016, 2017

- Interior of terrestrial planets:
 - Metallic core (liquid Fe-S-Si)
 - Silicate mantle (mineralogy from PerpleX)
- Theoretical case of ocean planets (Léger et al. 2004):
 - Water envelope (liquid and high-pressure ice)

INTERIOR MODEL

Brugger et al. 2016, 2017

- Interior of terrestrial planets:
 - Metallic core (liquid Fe-S-Si)
 - Silicate mantle (mineralogy from PerpleX)
- Theoretical case of ocean planets (Léger et al. 2004):
 - Water envelope (liquid and high-pressure ice)
- Previously unused equation of state (Holzapfel 1991), allows to correctly extrapolate Earth data
- Monte-Carlo approach, adapts planetary composition to fundamental parameters

DEGENERACY ON COMPOSITION

Same mass, same radius

DEGENERACY ON COMPOSITION

Same mass, same radius

- ➡ Breaking the degeneracy requires an additional parameter (Rogers & Seager 2010; Dorn et al. 2015, 2017)
- Stellar Fe/Si used as proxy for planetary value, following assumption in the solar system (e.g. Johnson et al. 2012)
- Planetary Fe/Si fixes core mass fraction (CMF)

The first **super-Earth** with measured mass & radius:

$$M_P = 4.73 \pm 0.95 M_{\oplus}$$

Haywood et al. 2014

$$R_{P} = 1.585 \pm 0.064 R_{\oplus}$$

Barros et al. 2014

As a dry terrestrial planet:

Brugger et al. 2017

The first super-Earth with measured mass & radius:

 $M_P = 4.73 \pm 0.95 M_{\oplus}$ Haywood et al. 2014

 $R_{P} = 1.585 \pm 0.064 R_{\oplus}$ Barros et al. 2014

As a dry terrestrial planet:

Core mass fraction

From fundamental parameters only:

$$0 - 50 \%$$

The first super-Earth with measured mass & radius:

$$M_P = 4.73 \pm 0.95 M_{\oplus}$$
Haywood et al. 2014

$$R_{P} = 1.585 \pm 0.064 R_{\oplus}$$

Barros et al. 2014

As a dry terrestrial planet:

Core mass fraction

From fundamental parameters only:

Using stellar Fe/Si:

Terrestrial planets better characterized from stellar abundances

Degenerate composition when considering the possibility that CoRoT-7b can also be an **ocean planet**:

Degenerate composition when considering the possibility that CoRoT-7b can also be an **ocean planet**:

Degenerate composition when considering the possibility that CoRoT-7b can also be an **ocean planet**:

Ternary diagram:

From fundamental parameters only:

CMF
$$0-65\%$$
 WMF $0-50\%$

Using stellar Fe/Si:

Degeneracy reduced

K2-229B

Super-Earth with high bulk density of 8.9 ± 2.1 g/cm³ (Earth 5.5)

Fundamental parameters give a core mass fraction of 69⁺¹⁷-25% (Mercury ~70%)

Mass & Radius vs composition:

Santerne, Brugger et al. 2018

K2-229B

Super-Earth with high bulk density of 8.9 ± 2.1 g/cm³ (Earth 5.5)

Fundamental parameters give a core mass fraction of 69⁺¹⁷-25% (Mercury ~70%)

Mass & Radius vs composition:

Santerne, Brugger et al. 2018

Stellar Fe/Si ratio gives a CMF of 27⁺⁹₋₁₃%

88% probability that K2-229b has a composition differing from the stellar values

Discrepancy between planetary and stellar composition, similar to the case of Mercury in the solar system

PECULIAR CASE OF MERCURY

Brugger et al. (sub)

- High uncompressed density
 - Enriched in dense materials
- Large Fe/Si ratio
 compared to solar
 and chondritic values

SUPER-MERCURIES

 Several planets presenting high bulk densities, over large ranges of mass and radius

Do they all have a composition differing from the stellar values?

How unique is the case of Mercury?

CONCLUSIONS & PERSPECTIVES

- Interior models able to probe the nature and composition of detected exoplanets
 - Help identify targets for further habitability studies
- Major challenge in interior characterization: existence of degeneracy due to lack of observables
 - Stellar abundances shown to be important constraints in the characterization of both terrestrial and ocean planets
- Validity of the relation between stellar and planetary composition?
 - Family of super-Mercuries can help decipher the potential discrepancies