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Gaia hypothesis: 
“A complex entity involving the Earth's
biosphere, atmosphere, oceans, and
soil; the totality constituting a feedback
or cybernetic system which seeks an
optimal physical and chemical
environment for life on this planet.”



Co-evolution of Earth’s atmosphere and life

Evolution of O2 in Earth’s atmosphere

Glaciations

Lyons et al. 2014

GlaciationsOrganic haze ?
(Zerkle et al. 2012)

Methanogens



Kasting et al. 2004
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Co-evolution of Earth’s atmosphere and life

Previous study by Karecha et al. 2005:
- Estimation of CH4 production and NPP for 
different early ecosystems
- Calculation based on pure thermodynamics
- Fixed fraction of NPP and fixed Δ"
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Co-evolution of Earth’s atmosphere and life

Previous study by Karecha et al. 2005:
- Estimation of CH4 production and NPP for 
different early ecosystems
- Calculation based on pure thermodynamics
- Fixed fraction of NPP and fixed Δ"

Goal of our study
Revisiting Karecha’s study with state-of-the art models:
- Estimating CH4 emission, greenhouse effect and NPP for different ecosystems
- Analysing feedbacks between early ecosystems and the environment
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Atmospheric model: 

• Climate states simulated with the Generic LMD GCM

Ø Archean/Hadean climates and solutions to the faint young Sun problem
(Charnay et al. 2013, 2018)

- Atmospheric composition: 
N2, CO2, CH4 & H2O

- Surface pressure = 1 bar
- No land

Simulations at 3.8 Ga

→parameterization Tsurf = f(pCO2, pCH4, t)



Atmospheric model: 

• Photochemistry in 1D with the photochemical core from Lefèvre et al. 2003

Ø Hydrocarbure chemistry (18 species, 82 reactions)
Ø Nitrogen chemistry (15 species, 42 reactions): Production of NOx by lightning
Ø Boundary conditions: - fixed mixing ratio (CO2, H2, CH4)

- fixed surface flux  (CO, diffusion limited in the ocean)
- H escape to space

Key reactions:
(1) CO2 + H2 + hn → CO + H2O
(2) CO2 + CH4 + hn → 2CO + 2H2



Atmospheric model: 

CO2=100 mb, H2=1 mb, CH4=0.1 mb

Key reactions:
(1) CO2 + H2 + hn → CO + H2O
(2) CO2 + CH4 + hn → 2CO + 2H2

High CO production from CO2 and CH4 photolysis



Atmospheric model: 

CO2 + H2 → CO + H2O CO2 + CH4 → 2CO + 2H2

CO2=100 mb, H2=1 mb (at 3.8 Ga)

High CO production from CO2 and CH4 photolysis

Computation of an atmospheric with different mixing ratio of CO2, H2 and CH4
(CO assumed to be efficiently consumed by acetogens)
→parameterization for surface fluxes of CO2, H2, CH4 and CO at equilibrium



Carbon cycle model

Model from Krissansen-Totton et al. 2018

CO2 sources:
• Arc volcanoes
• Mid-oceanic ridges

CO2 sinks:
• Silicate weathering
• Seafloor weathering

Krissansen-Totton et al. 2018



Cellular dynamics :
• Catabolism
• Anabolism
• Cellular division
• Mortality

Population dynamics:
• Gas exchange with environment
• Influence of temperature

Ecosystem model
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Validation with data of methanogens in 
bioreactors (Kral et al. 1998)

Ecosystem model

Thermodynamics
ΔG ≈ 0

Kinetics

DGm

Division

Mortality

Cellular dynamics :
• Catabolism
• Anabolism
• Cellular division
• Mortality

Population dynamics:
• Gas exchange with environment
• Influence of temperature



List of metabolisms

Reaction ΔG0 ΔH0

Catabolic reactions:

Methanogenesis: 
0.25⋅CO2 + H2→ 0.25⋅CH4 + 0.5⋅H2O -32.575 -63.175

Acetogenesis: 
2⋅CO + H2O → CO2 + 0.5⋅CH3COOH -77.850 -129.850

Acetotrophy: 
CH3COOH → CO2 + CH4

-55.0 16.2

Acetogenic fermentors: 
CH1.8O0.5N0.2 + 5/6H2O + 0.2⋅H+ → 1/3CH3COOH + 1/3CO2 + 2.3/3H2 + 0.2⋅NH4

+
-12.71 10.066

Anabolic reactions:

CO2 + 0.2⋅NH4
+ + 2.1H2 → CH1.8O0.5N0.2 + 1.5⋅H2O + 0.2H+ -12.390 -99.700

CO2 + 0.1⋅N2 + 2.1H2 → CH1.8O0.5N0.2 + 1.5⋅H2O 28.25 128
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Results for ecosystems + atmosphere

Methanogens

Methanogens
+ CO-acetogens
+ Acetotrophs

Simulations at 3.8 Ga with : 
§ pCO2 = 100 mbar, T = 285 K  
§ F(H2)volc = 1-80 Tmol /yr
§ non-limited by nitrogen (N-fixation or recycling by fermentors)

CO-acetogens
+ Acetotrophs

Photochemically
induced syntrophy



Results for ecosystems + atmosphere + C cycle
Without ecosystem



Results for ecosystems + atmosphere + C cycle
With methanogens after 0.5 Gyr

Possible implications for the trigerring of Huronian glaciation



Summary

Perspectives

§ First dynamic model of early ecosystems coupled to climate and C cycle

§ Efficient CH4 production by methanogens ([CH4] = 100-1000 ppm) but less than
Karecha et al. 2005

§ Low NPP by methanogens (~30× lower than Karecha)

§ CO-acetogens + acetotrophs enhance NPP by a factor ~10 

§ Methanogens induce a weak positive feedback on climate and facilitate glaciations

§ Including anoxygenic and oxygenic photosynthesis

§ Computation of chemical disequilibrium and biosignatures
For the Archean, disequilibrium dominated by (Krissansen-Totton et al. 2018):

5$%2 + 4)2 + 3$+4 + 14+2% → 8)+4
+ + 8+$%3 −

For the Proterozoic and modern Earth:
5%2 + 2)2 + 2+2% → 4+ + + 4)%3 −

No gaian regulation of the climate by methanogens
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Atmospheric model: 

Comparaison to previous study and 1D VS 3D

CO2=10 mb, H2=1 mb (at 2.7 Ga)

1D model adequate



Atmospheric model: 

Ø Nitrogen chemistry (15 species, 42 reactions)
Production of NOx using lightning frequency from Wong, Charnay et al. 2017

CO2 + N2 → CO + 2NO

At 3.8 Ga with pCO2=0.1 bar:
NOx flux in the ocean = 1.8*108 mol/yr (essentially as HNO)



List of metabolisms

Reaction ΔG0 ΔH0

Catabolic reactions:
Methanogenesis: 
0.25⋅CO2 + H2→ 0.25⋅CH4 + 0.5⋅H2O -32.575 -63.175

Acetogenesis: 
2⋅CO + H2O → CO2 + 0.5⋅CH3COOH -77.850 -129.850

Acetotrophy: 
CH3COOH → CO2 + CH4

-55.0 16.2

NO3 Methanotrophy: 
0.25⋅CH4 + NO3

- → 0.25⋅CO2 + NO2
- + 0.5⋅H2O

-125.5 -120

NO2 Methanotrophy: 
0.375⋅CH4 + NO2

- + H+ → 0.375⋅CO2 + 0.5⋅N2 + 1.25⋅H2O
-393.14 -372.24

Acetogenic fermentors: 
CH1.8O0.5N0.2 + 5/6H2O + 0.2⋅H+ → 1/3CH3COOH + 1/3CO2 + 2.3/3H2 + 0.2⋅NH4

+
-12.71 10.066

Anabolic reactions:
CO2 + 0.2⋅NH4

+ + 2.1H2 → CH1.8O0.5N0.2 + 1.5⋅H2O + 0.2H+ -12.390 -99.700

CO2 + 0.1⋅N2 + 2.1H2 → CH1.8O0.5N0.2 + 1.5⋅H2O 28.25 128

low flux of 
NOx



Dynamics of methanogens
(pCO2 = 100 mbar, pH2=1 mbar, T = 285 K)  



Present day Earth under a 20% weaker Sun
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Present day Earth under a 20% weaker Sun


